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We calculate the nonequilibrium dynamic evolution of a one-dimensional system of two-component fermi-
onic atoms after a strong local quench by using a time-dependent spin-density-functional theory. The interac-
tion quench is also considered to see its influence on the spin-charge separation. It is shown that the charge
velocity is larger than the spin velocity for the system of on-site repulsive interaction �Luttinger liquid�, and
vise versa for the system of on-site attractive interaction �Luther-Emery liquid�. We find that both the interac-
tion quench and polarization suppress the spin-charge separation.
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I. INTRODUCTION

While the nonequilibrium dynamic evolution of quantum
systems has long been extensively studied,1 progress is hin-
dered by the tremendous difficulties in solving the nonequi-
librium quantum many-body Schrödinger equation. This
situation is going to be changed due to the progress in ex-
periments and the development in numerical methods.

On the experimental side, the development in manipulat-
ing ultracold atomic gases makes it feasible to study strongly
correlated systems with time-varying interactions and exter-
nal potentials and in out-of-equilibrium situations. The high
controllability in ultracold atomic-gases’ systems provides an
ideal testbed to observe the long-time evolution of strongly
correlated quantum many-body systems, and to test theoret-
ical predictions, such as the Bloch oscillation,2 the absence
of thermalization in nearly integrable one-dimensional �1D�
Bose gases,3 and the expansion of BEC in a random disorder
after switching off the trapping potential.4 These efforts al-
low us to study the nonequilibrium dynamics of strongly
correlated systems from a new perspective.

Numerically, many techniques have been developed, such
as, the time-adaptive density-matrix renormalization group
�t-DMRG�,5 the time-dependent numerical renormalization
group,6 continuous-time Monte Carlo algorithm,7 and time-
evolving block decimation method.8 Time-dependent spin-
density-functional theory �TDSDFT� has been proved to be a
powerful numerical tool beyond the linear-response regime
in studying the interplay between interaction and the time-
dependent external potential.9,10 More tests of the perfor-
mance of TDSDFT will be done in this paper on the polar-
ized system with attractive or repulsive interactions.
Compared to the algorithms, such as the t-DMRG, this tech-
nique gives numerically inexpensive results for large lattice
systems and long-time evolution but with difficulties in cal-
culating some properties, such as, the correlation functions.

The 1D bosonic or fermionic systems accessible by the
present ultracold experiments,11,12 are exactly solvable in
some cases13 and can be used to obtain a thorough under-
standing of the many-body ground-state and the dynamical
properties. The nonequilibrium problems in 1D system are
especially remarkable in which the 1D systems are strongly
interacting, weakly dissipative, and lack of thermalization.14

The 1D systems, belonging to the universality class de-
scribed by the Luttinger-liquid theory, have its particularity
in its low-energy excitations, characterized by charged, spin-
less excitations and neutral, spin-carrying collective excita-
tions. Generically, the different dynamics is determined by
the velocities of the charge and spin collective excitations,
which has been verified experimentally in semiconductor
quantum wires by Auslaender et al.15 The possibility of
studying these phenomena experimentally in 1D two-
component cold Fermi gases,11 where “spin” and “charge”
refer, respectively, to the density difference and the total
atomic mass density of the two internal atomic states, was
first highlighted by Recati et al.16 The different velocities for
spin and charge in the propagation of wave packets have
been demonstrated by Kollath et al.17,18 in a numerical
t-DMRG study of the 1D Fermi-Hubbard model, by Kleine
et al.19 in a similar study of the two-component Bose-
Hubbard model, and, analytically, by Kecke et al.20 for inter-
acting fermions in a 1D harmonic trap. Exact diagonalization
and quantum Monte Carlo simulations are also used in study-
ing the spin and charge susceptibilities of the Hubbard
model.21,22 Dynamic structure factors of the charge density
and spin are analyzed for the partially spin-polarized 1D
Hubbard model with strong attractive interactions using a
time-dependent density-matrix renormalization method.23

The spin-charge separation is well addressed for this
system.23 We would like to mention here that a genuine ob-
servation of spin-charge separation requires one to explore
the single-particle excitation, which is studied recently in
simulating the excitations created by adding or removing a
single particle.18,24

The nonequilibrium dynamics in 1D systems has attracted
a growing attention in the possible equilibrium properties
after an external perturbation and the changes in physical
quantities after the quench.17,25,26 The dynamic phase transi-
tion and different relaxation behavior are studied with a sud-
den interaction quench.7,27 The relation between the thermal-
ization and the integrability in 1D system is well addressed.28

The real-time evolution for the magnetization in the 1D spin
chain is also studied in great details using the t-DMRG.29

In this paper, we study the 1D system under an instanta-
neous switching off a strong local potential or on-site inter-
actions, namely, a sudden quantum quench is considered.

PHYSICAL REVIEW B 81, 104306 �2010�

1098-0121/2010/81�10�/104306�7� ©2010 The American Physical Society104306-1

http://dx.doi.org/10.1103/PhysRevB.81.104306


The strong local potential creates Gaussian-shaped charge
and/or spin accumulations at some position in space. After
the quantum quench, the time evolution of spin and charge
densities is then calculated at later times. We tackle this
problem using TDSDFT based on an adiabatic local spin-
density approximation �ALSDA�.

The contents of the paper are as follows. In Sec. II, we
introduce the model: a time-dependent lattice Hamiltonian
that we use to study spin-charge separation and quench dy-
namics. Then we briefly summarize the self-consistent lattice
TDSDFT scheme that we use to deal with the time-
dependent inhomogeneous system. In Sec. III, we report and
discuss our main numerical results. At last, a concluding sec-
tion summarizes our results.

II. MODEL AND THE METHOD

We consider a two-component repulsive/attractive Fermi
gas with Nf atoms loaded in a 1D optical lattice with Ns
lattice sites. At time t�0, a localized spin- and charge-
density perturbation is created by switching on slowly the
local potential, such that the system is in the ground state of
the system with the additional potential. At t=0+, the local-
ized potential is removed abruptly and/or the on-site interac-
tion is switched off instantaneously. This system is modeled
by a time-dependent Fermi-Hubbard Hamiltonian as follows:

Ĥ�t� = − ��
i,�

�ĉi�
† ĉi+1� + H.c.� + U�t��

i

n̂i↑n̂i↓ + �
i,�

Vi��t�n̂i�.

�1�

Here � is the hopping parameter, ĉi�
† �ĉi�� creates �annihi-

lates� a fermion in the ith site �i� �1,Ns��, �= ↑ ,↓ is a
pseudospin-1/2 degree-of-freedom �hyperfine-state label�,
U�t� is the time-dependent on-site Hubbard interaction of
negative or attractive nature, and n̂i�= ĉi�

† ĉi�. We also intro-
duce for future purposes the local number operator n̂i
=��n̂i� and the local spin operator ŝi=���n̂i� /2.

The external time-dependent potential Vi��t�=Vi�
ext��−t�,

which simulates the spin-selective focused laser-induced po-
tential. ��t� is the Heaviside step function which relates the
quench dynamics to the modification of the local potential.
��−t�=0 for t�0. Vi�

ext is taken to be of the following Gauss-
ian form:

Vi�
ext = W� exp�−

�i − �Ns + 1�/2�2

2�2 � . �2�

Here W� is the amplitude of the local potential. We discuss
the system of conserved particle number in the canonical
ensemble. The number of atoms for spin up and spin down
is, N↑ and N↓, respectively. The polarization is defined as p
= �N↑−N↓� /Nf. The on-site interaction and W� are scaled in
units of � as, u=U /� and w�=W� /�, respectively.

A powerful theoretical tool to investigate the dynamics of
many-body systems in the presence of time-dependent inho-
mogeneous external potentials, such as that in Eq. �1�, is
TDSDFT,30,31 based on the Runge-Gross theorem32 and on
the time-dependent single-particle Kohn-Sham equations.
The complication of the problem is hidden in the unknown

time-dependent exchange and correlation �xc� potential.
Most applications of TDSDFT use the simple adiabatic local
spin-density approximation for the dynamical xc
potential,30,33 which has often been proved to be successful
in studying the real-time evolution.31 In this approximation,
one assumes that the time-dependent xc potential is just the
static xc potential evaluated at the instantaneous density,
where the xc potential is local in time and space. The static
xc potential is then treated within the static local spin-density
approximation. Very attractive features of the ALSDA are its
extreme simplicity, the ease of implementation, and the fact
that it is not restricted to mean-field approximation and small
deviations from the ground-state density, i.e., to the linear-
response regime. The dynamics induced by the strong local
perturbation discussed here cannot be dealt with the theory
based on the linear response while TDSDFT is a good can-
didate.

We here employ a lattice version of SDFT and
TDSDFT.10 In short, for times t�0, the spin-resolved site-
occupation profiles can be calculated by means of a static
SDFT. For times t�0, we calculate the time evolution of
spin-resolved site-occupation profiles ni��t�0� by means of
a TDSDFT scheme in which the time-dependent xc potential
is determined exactly at the ALSDA level �details see, Ref.
10�. The performance of this method has been tested system-
atically against accurate t-DMRG simulation data for the re-
pulsive Hubbard model.10 It is found that the simple ALSDA
for the time-dependent xc potential is surprisingly accurate
in describing collective density and spin dynamics in
strongly correlated 1D ultracold Fermi gases in a wide range
of coupling strengths and spin polarizations. The perfor-
mance of TDSDFT in describing the nonequilibrium behav-
ior of strongly correlated lattice models has also been re-
cently addressed in Ref. 9.

In this work, we use this method to mainly discuss the
nature of the interactions on the velocities of the density and
spin evolution. The spin-charge dynamics after a local
quench is discussed in Luttinger liquids �for U�0, gapless
spin and charge excitations� and in Luther-Emery liquids �for
U�0, gapless charge and gapful spin excitations�. We con-
sider at the same time the influence of polarization on the
spin-charge dynamics. For attractive interactions, we limit
our discussion on the weak-interaction case because for
strong attractive interactions we found our SDFT code over-
estimates the amplitude of the bulk atomic density waves,
which will greatly influence the TDSDFT results based on
that.

Experimentally the strong local potential can be obtained
by a blue- or red-detuned laser beam tightly focused perpen-
dicular to the 1D atomic wires, which generates locally re-
pulsive or attractive potentials for the atoms in the wires,
corresponding to W��0 or W��0. In this paper, we are
interested in the repulsive potential for the atoms. The charge
and spin densities can be observed by using in situ sequential
absorption imaging, electron beams, or noise interference,34

which, in principle, gives an unambiguous information on
the spin-charge separation.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we report on the results calculated by solv-
ing the time-dependent Kohn-Sham equations. Mathemati-
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cally the solution of the time-dependent Kohn-Sham equa-
tions is an initial value problem. A given set of initial orbitals
calculated from the static Kohn-Sham equations is propa-
gated forward in time. No self-consistent iterations are re-
quired as in the static case.

For times t�0, the system is in the presence of a strong
local potential, which creates a strong local disturbance in
ultracold gases and makes the total density and spin-density
distributions in the center of the system locally different �up
to a few lattice sites�. We are interested in two kinds of
quench dynamics. The first one is that, at time t=0+, the local
potential is quenched with the time-independent on-site in-
teraction U�t�=U. The second is that, at time t=0+, the local
potential is switched off and at the same time the on-site
interaction is quenched instantaneously with U�t�=U��−t�.
After the quench, excitations are produced. We concern in
this paper the subsequent real-time evolution of the spin-
resolved densities after the quench, ni��t�= ���t�	n̂i�	��t�

with 	��t�
 the state of the system at time t. Charge density
and spin density are defined accordingly as ni�t�=ni↑�t�
+ni↓�t� and si�t�= �ni↑�t�−ni↓�t�� /2.

If not mentioned otherwise, the numerical results pre-
sented below correspond to a system with Nf =30 atoms on
Ns=100 sites, and with open �hard wall� boundary conditions
imposed at the sites i=0 and i=101. The external potential is
chosen to be spin dependent: w↑=−1 and w↓=0, used to form
a local-density and spin-density occupations in the center of
the system.

A. u�0 and p=0

In Fig. 1, we show results for a spin-unpolarized system
�N↑=N↓=15� with repulsive interaction of u=2. At t�0, a
dominant local charge- and spin-density profiles in the center
of the system are generated by the strong local potential.
After the quench of the local potential, the charge and spin
densities evolve and split into two counterpropagating den-
sity wave packets. The propagation in time is in fact due to
the nonequilibrium initial condition. The charge density
evolves with a quicker velocity than the spin, which is in
agreement with the general picture of spin-charge
separation.35 A qualitative analysis based on the continuity
equation for the momentum density can also well explain the
phenomena of spin-charge separation.36

We notice a common feature in almost all the figures in
this paper, that is, the spin and charge densities have an
asymmetric forward-leaning shape. This is caused by a non-
linear effect, i.e., the different local velocities in the center
and at the edges. Since the local velocity is proportional to
the density, the higher density in the center gains larger ve-
locity than that at the edges, which qualitatively explains
why the asymmetric forward-leaning shape happens during
the density propagation. For perturbations with small ampli-
tude, the charge velocity is studied in details by t-DMRG and
compared to the Bethe-ansatz results with good agreement.17

For the strong local potential studied here, the spin and
charge velocities, determined from the propagation of the
maximum of the charge and spin-wave packets away from
the center, vary with time. We thus calculate and compare the

velocities determined at the fixed time t=10	 /�. In the inset
of Fig. 1, we show the spin and charge velocities as a func-
tion of the amplitude of the local potential 	w↑	. We find both
velocities are increasing functions of 	w↑	. For the charge
background density ��0.3� in Fig. 1, the charge and spin
velocities by the Bethe-ansatz method are vc=1.15 and vs
=0.75. In the limit of w↑→0 but w↓�0, our results give
vc=1.3 and vs=0.65. The differences are possibly caused by
the simultaneous local perturbations in the charge and spin
densities used here, which break the spin-charge scenario
and couple the spin and charge modes, similar to the effects
caused by the finite spin polarization �see Secs. III C and
III D�.

In Fig. 2, we study the local potential quench together
with an on-site interaction quench, i.e., Vi��t�=Vi�

ext��−t� and
U�t�=U��−t�. We find that, the spin- and charge-density
wave packets split and counterpropagate as usual but the
phenomena of the spin-charge separation completely disap-
pears. That is, the spin and charge densities evolve with the
same velocity. From the Luttinger-liquid theory based on the
bosonization method37 or from the Bethe-ansatz solution,38
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FIG. 1. �Color online� Charge ni�t� and spin si�t� occupations as
functions of lattice site i and time t for Ns=100, N↑=N↓=15, w↑=
−1, w↓=0, �=2, and repulsive interaction of u=+2. Top panel:
ground-state charge and spin occupations for times t�0 �solid line�
and at time t=5 	 /� �dashed-dotted line�. Bottom panel: same as in
the top panels but at time t=10 	 /� �solid line� and t=20 	 /�
�dashed-dotted line�. The charge and spin densities are plotted in the
top and bottom of the panel, respectively. The arrows in the plot
indicate the positions where the wave packets propagate. In the
inset, we show the velocities of the charge vc �open circles� and
spin vs �solid circles� density wave packets as a function of the
amplitude of the local potential 	w↑	. Both velocities are increasing
functions of 	w↑	.
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one can derive that the spin velocity vs and the charge ve-
locity vc satisfy vc=vs=vF in the noninteracting limit, with
vF=2� sin�
n /2� the Fermi velocity. The interaction be-
tween the different species is one of the important ingredi-
ents for the spin-charge separation, which explains the sup-
pression of the spin-charge separation after the interaction
quench. Making use of the techniques from the cold atomic
gases, two different ways of quenching, used in Figs. 1 and
2, respectively, can give a clear signal that different collec-
tive spin and charge dynamics happens when starting from
the same initial strong local perturbation. We would like to
mention that Kollath proposed to repeat the dynamics in Fig.
1 in higher dimensions where no separation of spin and
charge should be seen.18 We notice that in Fig. 2 already at
short time, some density waves coming from the sharp edges
begin to influence the charge- and spin-density wave packets
from the center. At larger time, they will mix with the origi-
nal packets.

In practice, an additional trapping potential is unavoidable
in the present experimental setups. We thus present our simu-
lations for the system in the presence of an additional weak
superimposed harmonic trapping potential, namely, Vi�

ext in
Eq. �2� is changed into

Vi�
ext = W�e−�i − �Ns + 1�/2�2/2�2

+ V2i −
Ns + 1

2
�2

. �3�

Here we take V2 /�=5�10−4. The three-dimensional �3D�
plots of the time evolution of the spin- and charge-density
wave packets are shown in Fig. 3. From the figure, we ob-
serve that in the presence of the harmonic potential, the
charge and spin wave packets are highly inhomogeneous but
the counterpropagation and the separation of the charge- and
spin-density wave packets are still visible in the background
of the inverted parabola.

B. u�0 and p=0

In one-dimensional Hubbard model, away from half fill-
ing, the spin and charge velocities of the low-energy collec-
tive excitations satisfy,37,38

vs,c = vF�1 �
U


vF
.

This gives a qualitative explanation that for the positive-U
Hubbard model, the charge velocity is larger than the spin
velocity while for the negative-U Hubbard model, the charge
velocity is smaller than the spin velocity. In Fig. 4, the
quench dynamics for the attractive Hubbard model, which
belongs to the Luther-Emery universality class, illustrates
that spin-wave packets evolve with a faster speed than the
charge branches. In the inset of Fig. 4, we show the spin and
charge velocities evaluated at t=10	 /� as a function of the
amplitude of the local potential 	w↑	. We notice that an abrupt
change appears in the charge velocity at 	w↑	�0.55. For at-
tractive interactions, Luther-Emery paring induces a promi-
nent density wave characterized by the dip-hump structure.
While the charge velocity is determined from the propaga-
tion of the maximum of the charge wave packets located at
one of the humps of the density wave. The increase in the
amplitude of the local potential makes the maximum of the
charge wave packets move from the lattice site i=44 to i
=39, which explains the discontinuity of the charge velocity
for attractive interactions at 	w↑	�0.55. However, this dis-
continuous change has artifacts because the way of extract-
ing vc,s used here is not an optimum one. In Fig. 5, we
present the contour plots of the time evolution of the density
and spin packets for the system in the presence of a harmonic
trapping potential with V2 /�=5�10−4. The different evolu-
tion velocities for the charge- and spin-density wave packets
are clearly visible.

C. u�0 and pÅ0

The spin-charge separation in a spin-polarized one-
dimensional system is quite different from the fully polarized
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FIG. 2. �Color online� Charge ni�t� and spin si�t� occupations as
functions of lattice site i and time t with quenches for the local
potential and on-site interaction, i.e., Vi��t�=Vi�

ext��−t� and U�t�
=U��−t�. The other parameters are the same as that in Fig. 1. The
static density �solid line� is shown together with two time shots for
t=5 	 /� �dash line� and t=10 	 /� �dashed-dotted line�.

(b)

(a)

FIG. 3. �Color online� 3D plots for the Charge density ni�t� �Top
panel� and spin density si�t� �Bottom panel� as functions of lattice
site i and time t �in units of 	 /�� for a harmonically trapped system
with Ns=200, N↑=N↓=15, V2 /�=5�10−4, w↑=−1, w↓=0, �=2,
and repulsive interaction of u=2.
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one. The spin-charge-coupled dynamics in a polarized sys-
tem formulated with the first-quantized path-integral formal-
ism and bosonization techniques provides us a new non-
Tomanaga-Luttinger-liquid universality class.39 For the
Luther-Emery liquid of unpolarized attractive Fermi gases,
the spin and charge degrees of freedom are decoupled. In
contrast, in the system with finite spin imbalance, spin-
charge mixing is found based on an effective-field theory for
the long-wavelength and low-energy properties.40 In Figs. 6
and 7, the quench dynamics for spin- and charge-density
waves is shown for the system of repulsive interaction �u
=2� with polarization of p=0.47 and 0.87, respectively. For
p0.47, there is only small difference between spin and
charge velocities. In the case of a large polarization, the same
propagating velocities for spin and charge are obtained.

D. u�0 and pÅ0

The quench dynamics for spin and charge-density waves
of the attractive case for u=−1 is shown in Figs. 8 and 9. We
find with the increasing of the polarization, the spin-charge
separation is strongly suppressed due to the interplay be-
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FIG. 4. �Color online� Charge ni�t� and spin si�t� occupations as
functions of lattice site i and time t for Ns=100, N↑=N↓=15, w↑=
−1, w↓=0, �=2, and attractive interaction of u=−1. Top panel:
ground-state charge and spin occupations for times t�0 �solid line�
and at time t=5 	 /� �dashed-dotted line�. Bottom panel: same as in
the top panels but at time t=10 	 /� �solid line� and t=20 	 /�
�dashed-dotted line�. The inset shows the velocities of the charge vc

�open circles� and spin vs �solid circles� density wave packets as a
function of the amplitude of the local potential 	w↑	.

(b)

(a)

FIG. 5. �Color online� Contour plots for the Charge density ni�t�
�Top panel� and spin density si�t� �Bottom panel� as functions of
lattice site i and time t �in units of 	 /�� for a harmonically trapped
system with Ns=200, N↑=N↓=15, V2 /�=5�10−4, w↑=−1, w↓=0,
�=2, and attractive interaction of u=−1.
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FIG. 6. �Color online� The ground-state charge and spin occu-
pations as functions of lattice site i and time t for the system of
repulsive interaction of u=2 in the polarized case of P=0.47 �N↑
=22,N↓=8�. Besides the ground-state density and spin density
�solid line�, three time shots are shown with t=5 	 /� �dash line�,
t=10 	 /� �dashed-dotted line�, and t=15 	 /� �dotted line�.
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FIG. 7. �Color online� Same as Fig. 6 but for the polarized
system of P=0.87 �N↑=28,N↓=2�.
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tween charge and spin degrees of freedom. Theoretically, for
the partially polarized system, the spin and charge modes are
coupled. In this case, there is no strict spin-charge separation
scenario, namely, the spin-charge separation breaks down.
Numerically, we observe that, at small polarization, the spin
and charge wave packets still evolve at different velocities
although they are coupled and influence each other. At large
polarization, the spin-charge separation disappears and
evolves at the same velocities for both the repulsive and the
attractive systems we studied.

IV. CONCLUSIONS

In summary, we have calculated the nonequilibrium dy-
namic evolution of a one-dimensional system of two-
component fermionic atoms after a strong local quench with
or without interaction quench by using a time-dependent
density-functional theory with a suitable Bethe-ansatz based
adiabatic local spin-density approximation. A test of the per-
formance of TDSDFT is provided for the unpolarized sys-

tems with attractive or repulsive interactions in the presence
of a harmonic trapping potential. Under the same local per-
turbation, the charge velocity is larger than the spin velocity
for the system of repulsive interaction and vice versa for the
attractive case, which is compatible with the low-energy col-
lective dynamics from the Bethe-ansatz solution or the
bosonization techniques. We found the spin-charge separa-
tion is strongly suppressed when the interaction quench is
forced together with the local potential quench. Spin-charge
mixing is found for the system of polarization signaling by
the disappearance of the spin-charge separation. Numerically
we observe that the spin-charge separation disappears for
large polarizations in both the repulsive and the attractive
Hubbard model we studied.
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